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Scaling properties of fluctuations in the human electroencephalogram
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The fluctuation properties of the human electroencephalogram time series are studied using detrended
fluctuation analysis. For nearly all 128 channels in each of the 28 subjects studied, it is found that the standard
deviation of the fluctuations exhibits scaling behaviors in two regions. Topographical plots of the scaling
exponents reveal the spatial structure of the nonlinear electrical activities recorded on the scalp. Moment
analyses are performed to summarize the global variability across channels. The correlation between the two
scaling exponents in each channel is also examined. Two global measures are found that succinctly characterize
the overall properties of the fluctuation behaviors of the brain dynamics for each subject. Together they
distinguish the stroke subjects from the normal ones with 90% accuracy, suggesting the possibility that this
analysis could lead to an effective diagnostic tool.
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I. INTRODUCTION

The scalp electroencephalogram~EEG! provides a wealth
of information about human brain dynamics. The comp
nature of the brain results in a high degree of fluctuations
both the spatial and temporal aspects of the EEG signals
extract the salient properties from the data is the prim
objective of any method of analysis. We present in this pa
a combination of techniques that explores the scaling beh
ior of the temporal fluctuations, then uses moment anal
to summarize the spatial variability across many electr
channels.

The most common methods of EEG time series analy
are event-related time ensemble averaging and Fourier
composition, both of which are based implicitly on assum
tions of linearity@1,2#. Since the physiological mechanism
underlying the scalp EEG are generally nonlinear, they
generate fluctuations that are not best described by lin
decomposition. Moreover, the resting EEG always display
broad-banded power spectrum, so in Fourier analysis
must arbitrarily define frequency bands (d,u,a, . . . ) which
may not actually delineate different dynamical mechanis
unless tailored to each subject functionally. Wavelet analy
have also been applied to examine EEG time series@3#, but
at a sacrifice of the ability to describe long-range tempo
correlations. To quantify the nonlinear behavior of the EE
chaos analyses have been applied@4–6#, but typically re-
quire a long period of time to compute attractor propert
for a single time series. Moreover, chaos-based approa
assume the existence of low-dimensional attractors, and
is probably not a valid assumption for EEG dynamics g
erally. In this paper, we employ a method that analyzes
temporal fluctuations in the resting EEG over a relativ
short period of time (;10 s), and avoids the assumptions
linearity and low-dimensional chaos. We demonstrate the
istence of scaling behavior of the fluctuations in nearly
channels and all subjects studied.

The EEG voltage time series analyzed here were colle
1063-651X/2002/66~2!/021901~8!/$20.00 66 0219
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from 128 electrodes distributed uniformly over the sca
relative to a reference electrode located at the top of
head. An open challenge is how best to analyze the la
amount of data coming from this many channels. We aim
find what is universal among all channels as well as w
varies among them. The former is obviously important
virtue of its universality for a given subject; how that unive
sal quantity varies from subject to subject is clearly intere
ing. What varies from channel to channel is perhaps e
more interesting, since it has implications for describing
cal features that may have functional or clinical relevan
Our procedure is to focus initially on one channel at a tim
and determine a few parameters~scaling exponents! that ef-
fectively summarize the temporal fluctuations. The seco
phase of our procedure is to describe the global behavio
all channels and to arrive at two numbers that summarize
variability of the scaling exponents across the entire sc
surface. This intentional effort toward data reduction nec
sarily trades detail for succinctness, but such reduction
exactly what is needed to allow easy discrimination betwe
brain states or between subgroups.

The emphasis in this paper is on the method of analy
more than its application. We motivate and develop
analyses that extract the power-law behaviors in the EE
Since our approach is unconventional, it may be more p
suasive if we can provide some preliminary evidence of
utility. To this end, we apply the analysis to two subje
groups: normal and those with acute ischemic stroke.
find that our two-parameter description for each subject
fectively separates the two groups. This justifiesa posteriori
our approach, although it will require a body of future wo
to understand fully the dynamical origins of these scal
laws.

II. DETRENDED FLUCTUATION ANALYSIS

The specific method we use in the first phase is detren
fluctuation analysis~DFA!. This analysis is not new. It wa
©2002 The American Physical Society01-1
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proposed for the investigation of correlation properties
DNA nucleotides@7# and extended to heartbeat time ser
@8#. It has been applied to EEG only once to our knowled
@9#, but with somewhat different emphases than those p
sented here.

There is, however, an important difference between h
we use DFA here, and how it has been applied to, say,
heartbeat time series@8#. Heartbeat information is the inter
beat intervals that are discrete. As developed in Ref.@8#, the
fluctuations of the intervals from their long-time average
treated as the steps taken by a random walker, and the p
integral of the steps becomes the random-walk time serie
which the DFA is applied. The resulting scaling behavior c
then be related to the nature of the correlations in the t
series and an interpretation be given to the scaling ex
nents. As an example of that interpretation, one can note
the standard deviation of the usual unbounded random-w
time series increases as the square root of the numbe
steps; hence, the scaling exponent is 0.5. For that interp
tion to be effective the time series must be long. The he
beat problem treated in Ref.@8# involves very long time se-
ries, up to 24 h. Our problem is very different. The EEG tim
series is continuous and bounded, and the data segm
we analyze for most clinical applications are relatively sh
(;10 s). We therefore apply DFA to it directly without in
tegration. As a consequence, we lose the availability of
simple way to interpret our results, such as in the framew
of the random-walk problem. Nevertheless, our appro
yields meaningful description of the fluctuations when tak
in the context of global characterization. Further comme
to clarify our approach will be made at the end of the f
lowing section.

To be definitive, let an EEG time series be denoted
y(t), wheret is discrete time ranging from 1 toT. Divide the
entire range oft to be investigated intoB equal windows,
discarding any remainder, so that each window hask
5floor(T/B) time points. Within each window, labeledb(b
51, . . . ,B), perform a least-square fit ofy(t) by a straight
line ȳb(t), i.e., ȳb(t)5 linear fit @y(t)# for (b21)k,t<bk.
That is the semilocal trend for thebth window. DefineFb

2(k)

to be the variance of the fluctuationy(t) from ȳb(t) in the
bth window, i.e.,

Fb
2~k!5

1

k (
t5(b21)k11

bk

@y~ t !2 ȳb~ t !#2. ~1!

It is a measure of the semilocally detrended fluctuation
window b. The average ofFb

2(k) over all windows is

F2~k!5
1

B (
b51

B

Fb
2~k!. ~2!

F(k) is then the rms fluctuation from the semilocal trends
B windows each havingk time points.

The study of the dependence ofF(k) on the window size
k is the essence of DFA@7,8#. If it is a power-law behavior

F~k!}ka, ~3!
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then the scaling exponenta is an indicator of the nature o
the fluctuations in EEG. Since DFA considers only the flu
tuations from the semilocal linear trends, it is insensitive
spurious correlations introduced by slowly varying extern
trends. This is a practical advantage since EEG acquisi
systems often suffer from very slow (,0.1 Hz) drifts asso-
ciated with gradual changes in the quality of electrode c
tact to the skin, for example. The analysis also liberates
result from the dependence on the overall magnitude of
voltagey(t) recorded by each probe, which is an advanta
since overall signal amplitude can vary across subjects,
sumably due to differences in skull conductivity and oth
factors.

Resting EEG data were collected@10# for 28 subjects us-
ing a 128-channel commercial EEG system~Electrical Geo-
desics, Inc.!, with scalp-electrode impedences ranging fro
10 to 40 kV. The data were hardware filtered between 0
and 100 Hz, then digitized at 250 points/s. After acquisitio
T'10 s lengths of simultaneous time series in all chann
were chosen, free of artifacts such as eye blink and h
movements. At each time point, the average across all e
trodes was subtracted, to remove approximately the effec
the reference electrode@2#. We investigate the range ofk
from 3 to 500 in approximately equal steps of lnk. We have
verified that computingF(k) for all k from 3 to 500 simply
interpolates these values and does not affect the comp
scaling exponentsa i .

In Fig. 1, we show three typical time seriesy(t) in three
widely separated channels for subjectA, labeled 1–3, for
brevity. While it is clear that both channels 2 and 3 ha
substantial 10-Hz oscillations after 0.2 s, it is much less
parent that there exist any scaling behaviors in all three ch
nels. The corresponding values ofF(k) are shown in the
log-log plot in Fig. 2. Evidently, the striking feature is tha
there are two scaling regions with a discernible bend wh
the two slopes in the two regions are distinctly differe
With rare exceptions this feature is found in all channels
all subjects. Admittedly, the extents of the scaling regions
not wide, so the behavior does not meet the qualification
scaling in large critical systems or in fractal geometrical o

FIG. 1. A sample of EEG time series in three channels. T
vertical scales of channels 1 and 2 are shifted upward by 60
30 mV, respectively.
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SCALING PROPERTIES OF FLUCTUATIONS IN THE . . . PHYSICAL REVIEW E 66, 021901 ~2002!
jects. However, since the behavior is so universal acr
channels and subjects, and since the temporal scales invo
are physiologically relevant, this scaling behavior is a feat
of EEG that conveys a unifying property of the dynam
across temporal scales and warrants further investigation

III. SCALING AND NONSCALING PROPERTIES

To quantify the scaling exponents, we perform a linear
in region I for 1, ln k,2.5 and denote the slope bya1, and
similarly in region II for 3.5, ln k,5.75 with slope denoted
by a2. Visual inspection for each of the 28 subjects verifi
that fitting this way does a remarkably good job of char
terizing the slopes in the two regions. Knowing the tw
straight lines in each channel allows us to determine the
cation of their intercept lnk, which gives a good approxima
tion for the position of the bend in lnk. We find that, whereas
a1 anda2 can fluctuate widely from channel to channel,k is
limited to a narrow range in most subjects. The avera
value of lnk for each subject ranges from 2.6 to 3.6, with
grand average across subjects to be approximately 3.
should, however, be noted that whena1 and a2 are nearly
the same, as is the case for channel 1 in Fig. 2, the dete
nation ofk by the intersection of the two straight lines is n
reliable. Nevertheless, it is visually clear that the bend occ
in the vicinity of lnk53.1.

Since scaling behavior means that the system exam
has no intrinsic scale, scale noninvariance atk implies thatk
is related to a characteristic time scale in the data. From
1 one indeed sees roughly periodic oscillations in channe
and 3. It is at this point that a contact can be made with
usual Fourier analysis. Although our analysis focuses
scale invariant quantities, i.e., the dimensionless scaling
ponents, it is worth digressing momentarily to establish t
contact. To do this, we loosely associate the time scalk
with the period of a sine wave with frequencyf. If the data
acquisition rate is denoted byr, then the frequencyf corre-
sponding tok is

FIG. 2. F(k) versusk for the three channels in Fig. 1. Th
vertical scales of channels 1 and 2 are shifted upwards by 1.0
0.5 units, respectively.
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For our data acquisition we haver 5250 points/s. For the
across-subject average of lnk53.1, we get from Eq.~4! f
511.3 Hz. That is in the middle of the traditionala ~8–13
Hz! EEG frequency band. Thus the dominant periodic os
lation apparent in Fig. 1 does reveal itself in the study of
scaling behavior.

Now that we have noted the relationship between
bend inF(k) and the dominant frequency of sinusoidal o
cillation in the data, a word of caution is in order. One m
be tempted to think that if, instead of considering the flu
tuations from the linear semilocal trendsȳb(t), one studies
the fluctuations from periodic oscillations, then the be
might disappear and the two scaling regions might be join
to become one. Even if that were true, such a proced
should not be used for two reasons. First, not all chann
exhibit obvious oscillatory behaviors with definite freque
cies. Whatever detrending one chooses should be univer
applied to all channels in order to avoid introducing discre
encies across the channels due to external intervention.
ond, to determine the frequency of the oscillatory trend
quires a Fourier analysis, which is precisely what o
approach attempts to circumvent. To decide on a sinuso
wave of a particular frequency as reference for detrend
involves arbitrariness and is unlikely to lead to any simpl
cation in the global picture. The simplest and least bia
approach is to use the semilocal linear trends, as we h
done. If one’s interest is in the sinusoidal frequency cont
of the EEG time series, then Fourier analysis is direct. Alt
natively, if one’s interest is in the fluctuations generally a
their relationshipsacross time scales, then DFA allows a
more succinct parametrization. Hereafter, frequency plays
essential role in this paper.

For each subject we have 128 pairs of values of (a1 ,a2),
which summarize the temporal fluctuations in terms of sc
ing exponents. In Fig. 3, we exhibit by scatter plot the valu
of a1 anda2 of all channels for subjectA. The three points
marked with circles correspond to the channels shown in F
2. Overall, for subjectA, the scaling exponents are in th

nd

FIG. 3. Scatter plot ofa2 versusa1 for subjectA. The three
channels exhibited in Figs. 1 and 2 are shown as circles.
1-3
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RUDOLPH C. HWA AND THOMAS C. FERREE PHYSICAL REVIEW E66, 021901 ~2002!
ranges: 0.19,a1,1.44 and 0.018,a2,0.489. Whereasa1
is widely distributed,a2 is sharply peaked at 0.1 and has
long tail. Region I corresponds to fluctuations over sh
time scales, region II over long time scales, withk giving a
quantitative demarcation between the two. In most chan
we find a1.a2, although there are a few channels whe
a1'a2. The scatter plots of all other subjects are similar
general features to the one shown in Fig. 3, but vary in de
from subject to subject. It is impractical to show them all
this paper. Evidently, it is desirable to find a way to quant
succinctly these 128 pairs of numbers so that one can e
tively compare the results across subjects.

Since our application of DFA differs from that of previou
authors, in that we do not integrate the EEG time ser
some comments are in order on the theoretical significa
of the a i values obtained here. Since the EEG time serie
bounded, one should expect that, ask→`, F(k) becomes
a constant, and that the asymptotic slopea` becomes zero
Since we find that usuallya2,a1, one may be tempted to
regard the changes of slopes in Fig. 2 as preludes toward
asymptotic behavior just noted, and to dismiss the sign
cance of the two scaling regions. There are several a
ments against such a view. First, the bend separating the
scaling regions occurs at a physiologically meaningful ti
scale and is usually abrupt. In contrast, the bend toward c
stancy due to the asymptotic requirement can occur gra
ally over any range ofk and has no obvious physiologica
significance beyond the fact that the EEG is bounded. S
ond, most of the values ofa2 are far from zero, and in som
casesa1'a2 or a1,a2. They fluctuate widely across chan
nels, as is evident from the scatter plot in Fig. 3. Indeed,
give appropriate weight to the large values ofa2 in the mo-
ment analysis below. The fact that in some channelsa2
'a1 implies that there is little bending between regions
and II and that the asymptotic behaviora→0 ask→` has
no effect in the data analyzed. Third, knowing the asympto
behavior does not imply that there is no valuable informat
contained in the nonasymptotic behavior. To extract such
formation is especially important when there are clinical r
sons for the impracticality of obtaining very long time serie
in which the asymptotic limit may become evident. Final
although the individual values ofa1 anda2 cannot be given
a simple interpretation, as one could with the scaling ex
nents of long random-walk time series, thea i ’s should be
regarded as the bricks in the building of a global struct
that can characterize the general brain state of a subjec

IV. MOMENTS OF THE SCALING EXPONENTS

A scatter plot such as in Fig. 3 reveals very well how t
a i exponents of all the channels are related to one ano
However, it shows nothing about the locations of the ch
nels on the scalp. To show that, we can make topograph
plots ofa1 anda2 separately, as in Fig. 4. It is seen that ea
plot varies systematically over the scalp, and that the ra
of their variability is large compared to the errors in the
calculation. Such plots may be useful for attempting to
calize focal features, e.g., associated with particular b
functions and/or pathologies. However, there are case
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which EEG changes are known to be not spatially localiz
with the site of pathology. Ischemic stroke is one such
ample @11#. It is therefore of great interest to develop few
parameter descriptions of global brain state, to facilit
comparisons across subjects, and to quantify brain state w
out necessarily presuming spatial localization. To this e
we develop here an approach for analyzing the variability
the scaling exponents with the aim of getting global me
sures.

We propose to consider the moments of the scaling ex
nents. In general, if we haveN numbers,zj , j 51, . . . ,N, we
can calculate the moments

Gq5
1

N (
j 51

N

zj
q , ~5!

whereq is a positive integer@12#. The information contained
in the first N moments~i.e., q51, . . . ,N) is enough to re-
produce all thezj by inversion. However, we may be inte
ested in only a few of theGq with lower orderq, each of
which contains some information of all thezj . In our present
problem we haveN5128, and we shall consider the first te
orders 1<q<10. That is a significant step in data reductio
a process worth investigating.

Before calculating the moments ofa i , let us see how
those values are distributed. Letx be eithera1 or a2. Since
no value ofa i has been found to exceed 1.5 in the subje
we have examined, we consider the interval 0<x<1.5. Di-

FIG. 4. Topographical plots ofa1 ~top! anda2 ~bottom!. In each
figure, ten contour lines are drawn within the data range: solid li
above the mean, dotted lines below.
1-4
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vide that interval intoM equal cells, which for definitenes
we take to beM5150 here. Let the cells be labeled bym
51, . . . ,M , each having the sizedx51.5/M . Denote the
number of channels whosex values are in themth cell by
nm . Define

Pm5nm /N. ~6!

It is the fraction of channels whosex values are in the rang
(m21)dx<x,mdx. By definition, we have(m51

M Pm51.
In Fig. 5, we show as an illustration the two graphs ofPm for
subjectA. The two graphs correspond toa1 anda2, and are,
in essence, the projections of the scatter plot in Fig. 3 o
the a1 and a2 axes. From Fig. 5, we see thata1 is widely
distributed, whilea2 is not ~in absolute values!, but has a
long tail relative to its mean.G1 gives the average, andG2 is
related to the width.

Since the variance and other moments typically incre
with the mean of a distribution, the fluctuation ofm in Pm is
best measured relative to its mean. Let us therefore cons
the normalized moments@13#

Mq
( i )5Gq

( i )/~G1
( i )!q5 (

m51

M

mqPm
( i )Y S (

m51

M

mPm
( i )D q

,

~7!

where i 51 or 2. Since these moments are averages
(m/m̄)q, wherem̄ is the averagem, they are not very sensi
tive to m̄ itself. They contain the essence of the fluctuati
properties ofa1,2 in all channels. In terms of the scalin
exponents explicitly, let us usea i( j ) to denote the value o
a i for channelj so that Eq.~7! may be rewritten as

Mq
( i )5

1

N (
j 51

N

a i~ j !qY S 1

N (
j 51

N

a i~ j !D q

. ~8!

In principle, it is possible to examine also the mome
for q,0, which would reveal the properties ofPm at low
values ofm. However, the accuracy of our data is not t
reliable for low-k analysis, since the 60-Hz noise due to a
bient electric and magnetic fields has not been cleanly

FIG. 5. The distributionsPm for a1 anda2. The window size in
a for this plot is 0.02.
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tered out, and the sampling rater 5250 Hz does not allow
meaningful scaling analysis for shorter time scales. In t
paper, therefore, we restrict our study to only the positivq

values. For highq, the largem/m̄ parts of Pm
(1,2) dominate

Mq
(1,2) .
In Fig. 6 theq dependences of lnMq

(1,2) are shown for the
distributions exhibited in Fig. 5 for 2<q<10. They are ap-
proximately linear except for the low values ofq. The same
type of dependences onq are found for all subjects. In Fig. 6
we show two straight lines that can fit very well the nea
linear behaviors of lnMq

( i ) versusq for q>5. Thus for large
q we have

Mq
( i )}exp~m iq!, q>5. ~9!

The linear extrapolations of the lines to lower values ofq
show the degree of deviation of the calculated values
ln Mq

(1,2) from linearity. Since lnMq
(1) and lnMq

(2) behave so
similarly in their departures from their linear dependences
q, we plot lnMq

(2) versus lnMq
(1) in order to exhibit their

direct relationship without explicit dependence onq. We find
that they are linearly related over a wider range of valu
This linearity is found to be true for all subjects. The plo
for three of them are illustrated in Fig. 7, where the straig
lines are the linear fits. Thus the implication is that the
exists a universal power-law behavior

Mq
(2)}~Mq

(1)!h ~10!

valid for all subjects examined. From Eqs.~9! and ~10!, we
obtain

h5m2 /m1 , ~11!

but now h is meaningful for allq ~except for the lowest
points! and in that sense independent ofq. Thus we have
discovered a global measureh that characterizes alla i val-
ues of a subject, and varies from subject to subject. We p
pone the display of theh values for all subjects until later.

To understand the exponential behavior in Eq.~9!, we
note thatGq is dominated by largezj whenq is large, as is

FIG. 6. Theq dependence of lnMq
(i) for subjectA. The straight

lines are linear fits of the points forq>5.
1-5
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self-evident in Eq.~5!. For asymptotically largeq, we have
Gq}exp(q ln zmax), wherezmax5max$zj%. For intermediate
q, all large values ofzj can make important contributions
and the exponential dependence onq can still prevail. The
denominator in Eq.~7! is G1

q5 z̄q5exp(q ln z̄), where z̄ is
the average ofzj , so it is also exponential for anyq. It is
therefore clear that Eq.~9! follows, and thatm i depends on
all zj with more weight on the largezj values. The power-
law behavior of Eq.~10! implies that the exponenth is in-
dependent ofq and that alla i values are relevant contribu
tors to the universal behavior. This is an important po
worth emphasizing: the independence ofh on q implies that
the whole spectra ofa1 anda2 are summarized by the on
index h. The fact thath varies from subject to subject is
consequence of the variability of all 128 pairs of (a1 ,a2)
across the subjects, and offers the possibility thath can be
used as a discriminating representation of the brain state

V. CORRELATIONS OF THE SCALING EXPONENTS

The analysis in the preceding section treats the mom
of a1 anda2 separately. Only in the last step are the glob
properties embodied inMq

(1) and Mq
(2) related through the

exponenth in Eq. ~10!. In that approach the pairing ofa1
with a2 in each channel is not taken into account. Howev
we know that there are channels, such as channel 1 in Fig
and 2, where the absence of a dominant mode of oscilla
results ina1'a2. Thus the correlation between the two sc
ing exponents is an important feature that should be explo
and quantified. To that end we define

b5a2 /a1 ~12!

for each channel. In most cases we haveb,1, but b.1 is
possible and, by its rarity, noteworthy.

From a scatter plot, such as Fig. 3, it is possible to vi
alize theb distribution, sinceb is just the slope of a line
from the origin to each point. We show in Fig. 8 theb

FIG. 7. A log-log plot ofMq
(2) versusMq

(1) for three subjectsA,
B, andC. The solid lines have the slopes given by Eq.~11!.
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distributions for the same three subjects as those in Fig
SubjectB is chosen for display because it has the largesth,
while subjectC is chosen because it has severalb values that
exceed 1.

To summarize the 128 values ofb j for each subject, we
apply to them the moment analysis that is developed in S
IV. Let us therefore define

Nq5
1

N (
j 51

N

b j
qY S 1

N(
j 51

N

b j D q

. ~13!

The q dependence of lnNq for the same three subjects a
shown in Fig. 9. Again, linear fits are very good. Thus w
have

Nq}exp~nq! ~14!

with a distinctn for each subject. Clearly, the ones with wid
b distributions relative to their means have higher values
n.

FIG. 8. The distributions of theb values of the subjectsA, B,
andC.

FIG. 9. Theq dependence of lnNq for subjectsA, B, andC.
1-6
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VI. SEPARATING STROKE FROM NORMAL SUBJECTS

Up to this point we have deliberately chosen not to d
cuss the conditions of the subjects so that attention could
focused on the method of analysis and the existence of s
ing behavior in EEG generally. Now we state that among
28 subjects, eighteen are normal and ten have acute isch
stroke. Both subject groups exhibit these scaling behavi
We have analyzed their EEG time series in identical w
and determined the two indicesh and n for each subject.
Figure 10 shows a scatter plot of (h,n) for all 28 subjects.
The normal subjects are labeled by open circles and
stroke subjects by filled circles. The values of (h,n) are
widely distributed for the 28 subjects, and with one exce
tion the two subject groups are distinctly separated. The
mal subjects are all restricted to a narrow wedge region
the (h,n) plot. The stroke subjects are scattered over a la
area outside the wedge. There is one stroke subject w
h-n values lie inside the wedge for reasons that are not
understood. Nevertheless, in this initial attempt to catego
the subjects we have achieved 100% success rate in fin
the normal subjects confined to the wedge region, and 9
rate in finding the stroke subjects outside it. To our know
edge, the conventional approach to stroke detection w
EEG, using Fourier power spectrum analysis combined w
topographic plotting, does not have such a high rate of s
cess in discriminating the subjects@11,14#.

It is outside the scope of this paper to examine further
clinical conditions of the subjects to pursue an understand

FIG. 10. Scatter plot ofn versush for all 28 subjects. Open
circles indicate 18 normal subjects. Closed circles indicate 10 s
jects with acute ischemic stroke. The significance of the we
region is discussed in the text.
a-
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of one exception. We emphasize instead that, based u
these results, the approach seems very promising. To be
more subjects in both groups must be studied to confirm
utility of this approach as a clinical discriminator of th
stroke. It is likely that the measures developed here will fi
wider utility when applied to diverse data sets and subj
conditions. Our objective in this paper is mainly to descri
the method that gives rise to an interesting and useful res
We believe that the existence of scaling behavior inF(k) as
computed here, and its apparent success in this clinical
plication, are sufficient to justifya posteriori our unconven-
tional application of DFA to continuous EEG time series.

VII. CONCLUSION

Recognizing that the brain is a highly complex system,
have explored a way of analyzing the EEG time series t
avoids the assumptions of linearity and low-dimensio
chaos. By studying the fluctuations from linear trends d
fined over varying time scale, we have found two scali
regions in which the rms fluctuations can be characterized
two dimensionless scaling exponentsa1 and a2, for each
channel. We then performed moment analyses to reduce
large number of pairs of (a1 ,a2) to simple summary statis
tics. The two types of independent momentsMq

( i ) and Nq

yield two indicesh andn, which provide concise signature
of the nonlinear behavior of all channels of the EEG signa

Our emphasis in this paper has been on the method
analysis more than on the clinical study of the subjects. N
ertheless, working with 28 subjects is sufficient to demo
strate the effectiveness of the method, to show the univer
ity of the scaling behaviors, to reveal the range of variabil
of the indices derived, and to offer the possibility of a ne
way of thinking about global human brain dynamics. T
initial indication that our analysis can lead to categorizat
of the subjects according to their locations in the (h,n) plot
offers realistic hope that the method proposed has possi
ties of becoming an effective diagnostic tool.
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